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A Pressing Changes in Healthcare Landscape and

IOz ROLTECINCE Economics Call for Personalized Healthcare
Access to care
Genetics

Health behaviors/
personal lifestyle

10%
20%

20%

Determinants of health issues
(source: Institute for the future, Center for
disease control and prevention, 2006)

Environment

= The burden of disease is shifting from diseases caused by
infectious organisms to disorders with behavioral causes

= 50% of all deaths worldwide in 2006 and economic fallout in
billions... expected to be 75% of gross domestic product by 2030

= This calls for a two-fold paradigm shift in health delivery:

Symptom-based -  Preventive healthcare
Hospital-centered sickcare =  Person-centered healthcare

© EPFL 2015



(PN WBSN is a major technology for wearable personal

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE h ea Ith Syste mS

« Quitfitting people with sensor collecting
vital signals.

* Many sensor: ECG, EMG, EEG,
Accelerometer ,... . \

* <> Huge bandwidth required _/ ._ ¢ i3
<> High power consumption l .
* Increasing demand for long time monitoring
« Autonomy and lifetime ‘ /
« Main Challenge: i /
« power efficient ¢ N —

e bandwidth ¢/ Wireless body area network
(WBSN or WBAN)

* small in form factor, light in weight



(PN WBSN is a major technology for wearable personal

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE health Systems

« Quitfitting people with sensor collecting
vital signals.

* Many sensor: ECG, EMG, EEG,
Accelerometer ,...

J Eco \
* <> Huge bandwidth required : y “ .
* <> High power consumption # d 2 \.|
.
* Increasing demand for long time monitoring . - $ ‘,'|
e Autonomy and lifetime B ; ’ I'
« Main Challenge: ¥ /

* power efficient ¢

Multi-parametric bio-signals
- bandwidth ¢/ analysis:
How to design a WBSN?

* small in form factor, light in weight



M CPFL G State-of-the-Art WBSN Designs:Streaming of Raw Data
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Voltage

Long-term ECG monitor
(Holter or event recorder)
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M CPFL G State-of-the-Art WBSN Designs:Streaming of Raw Data
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Kai,2011

Ll 6

Toumaz digital plaster (2011 -13)

MyHeart (Luprano,2006) Shimmer (2011)
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Health@Home (Sanchez, 2010)  MobiHealth (Halteren,2004) TEMPO (Barth,2009) Thiemjarus (2005-11)
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M CPFL G State-of-the-Art WBSN Designs:Streaming of Raw Data
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Kai,2011

.L ___“L. — J"\- T e |
Toumaz digital plaster (2011-13)

s 5
o3
(
. |
e

MyHeart (Luprano,2006) Shimmer (2011)

Long-term ECG monitor

Health@Home (Sanchez, 2010)  MobiHealth (Halteren,2004) TEMPO (Barth,2009) Thiemjarus (2005-11)

Since the WBSN nodes do not do any processing,
how much can they last? Only 2-3 days...

© EPFL 2015 4




e The Shimmer™ WBSN platform

FEDERALE DE LAUSANNE

= TI MSP430 microcontroller
= 16-bit, 8MHz, 10KB RAM, 48KB Flash
= ADC converters, DMA, HW multiplier
= CC2420 radio
= 250 Kbps, ZigBee compliant
= Sensors
= 3-channel ECG
= Accelerometers and gyroscopes

© EPFL 2015 ) 5



e The Shimmer™ WBSN platform

FEDERALE DE LAUSANNE

= TI MSP430 microcontroller = CONSTRAINTS:
= 16-bit, 8MHz, 10KB RAM, 48KB Flash = No floating point operation
= ADC converters, DMA, HW multiplier = No hardware division

= CC2420 radio = Limited memory
= 250 Kbps, ZigBee compliant = Limited autonomy

= Sensors (rechargeable Li-polymer
= 3-channel ECG battery of 380 mAh)

= Accelerometers and gyroscopes

© EPFL 2015



(L Long-lived wireless ECG monitoring require a major
IR breakthrough in the energy efficiency of WBSN nodes

Shimmer™node 4 Can we reduce the data sensing/sampling
" cost and the amount of streamed data?

2. Can we embed automated analysis without
compromising the system lifetime?

= This wireless 1-lead ECG streaming monitor lasts 134.6 h.

Data processing

i

Radio communication

Sensing and
sampling
© EPFL 2015

Enerqy consumption breakdown
[Rincon et al., DATE ‘08 and TITB ‘“11]




(Wl | Long-lived wireless ECG monitoring require a major
IR breakthrough in the energy efficiency of WBSN nodes

Shimmer™node 4 Can we reduce the data sensing/sampling
‘ cost and the amount of streamed data?

2. Can we embed automated analysis without
compromising the system lifetime?

Under stringent processing and memory constraints!

= This wireless 1-lead ECG streaming monitor lasts 134.6 h.

Data processing

/

Radio communication

Sensing and
sampling
© EPFL 2015

Enerqy consumption breakdown
[Rincon et al., DATE ‘08 and TITB ‘“11]
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L State-of-the-Art Smart WBSN: Embedded Processing
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\
Shimmer Heart Rate Monitoring Corventis’s PiiX
(shimmerresearch, 2010-13) (Massagram, 2010) (Corventis MCT systems, 2011-13) Toumaz’s Sensium Life
(Wong,2009)

0.13 ym CMOS

LI A A A AN A A A

2.5 mm

PP ) Holst Centre
Zhang (2012) IMEC cardiac patch (Masse, 2010-13)
(Yazicioglu,2009)
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|
Shimmer Heart Rate Monitoring Corventis’s PiiX

(shimmerresearch, 2010-13) (Massagram, 2010) (Corventis MCT systems, 2011-13) Toumaz’s Sensium Life
(Wong,2009)

—

\

) ™
5 ;
i) ’mlsl Centre |
T

i

Holst Centre

33mm 7 IMEC cardiac patch -
S (9012 (Masse, 2010-13)
9 (2012) (Yazicioglu,2009)

Only simple filtering and one-lead input

© EPFL 2015 7
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(i State-of-the-Art Smart WBSN: Embedded Processing
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Shimmer Heart Rate Monitoring Corventis’s PiiX

O

(shimmerresearch, 2010-13) (Massagram, 2010) (Corventis MCT systems, 2011-13) Toumaz’s Sensium Life

%

(Wong,2009)

Holst Centre

Zhang (2012) IMEC cardiac patch (Masse, 2010-13)
(Yazicioglu,2009)

Only simple filtering and one-lead input

The goal from an ULP system-level perspective is to design:
(1) Long-lived and accurate multi-lead ECG monitoring
(2) Smart wireless personal health analysis systems

© EPFL 2015 7



(L Our smart ECG sensor node concept for WBSN will
B T capitalize on all 3 automatic processing algorithms

cG SHIMMER node i {;?' ™
“A - Wil | \ ‘ | Vh‘r
an e e B i
o | | N ,t
: - | i/ : 2o Feature
o ¢ Noise Analysis )
: ’\ L T filtering - delineation = (arrhythmia > (I)
>} diagnosis)
((l)) > Displays the received data
© EPFL 2015 8



(L Our smart ECG sensor node concept for WBSN will
B T capitalize on all 3 automatic processing algorithms

ECG SHIMMER node i

: - | ( : foe Feature
. Noise Analysis )
: ’\ . TT> filtering - delineation = (arrhythmia > (l)

diagnosis)

> Compression

((I)) > Displays the received data

© EPFL 2015



-(Pﬂ! Selecting ECG filtering algorithms

FEDERALE DE LAUSANNE

= Baseline wander and muscular noise removal

1. Cubic spline [Rincon et al., TITB’11]
Detect the knot of 3 consecutive beats
The curve fitting the 3 knots is the baseline wander  sensors

2. Morphological filtering (99.2% accuracy) Vo -

Based on erosion and dilation operations
Baseline correction + noise reduction

© EPFL 2015




MO Selecting ECG filtering algorithms

T[DERALE DE L'\LSv\l\N[

= Baseline wander and muscular noise removal

1. Cubic spline [Rincon et al., TITB’11]

Detect the knot of 3 consecutive beats
The curve fitting the 3 knots is the baseline wander  sensors

2. Morphological filtering (99.2% accuracy) Vo -

Based on erosion and dilation operations
Baseline correction + noise reduction

Moral of the story: knowing possible noise sources, possible to
correct them with few sensors and “simple” signal processing

© EPFL 2015
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.(”l. Embedded delineation of ECG characteristic waves

FEDERALE DE LAUSANNE

= Delineation is either done manually
(by a cardiologist) or automatically
(either by a bulky bedside equipment
or offline on a PC)

= Delineation can be either based on a
single lead or multiple leads

Real-time single-lead ECG characteristic

ECG, delineator (discrete waves timing and
Wavelet transform) -amplitude
information

[Boichat et al., BSN’09]

= Optimizations for online operation:
Processing of short blocks of ECG samples
Dynamically adapting underlying signal thresholds

Integer operations for fast implementation of

complex functions (V)
© EPFL 2015 10
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.(”l. Embedded delineation of ECG characteristic waves
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ECG,

—

Baseline
removal

ECG,

— >

Baseline
removal

ECG,,

—>

Baseline
removal

!

—>

Merging
of
multiple
ECG

leads

—>

[Rincon et al., TITB’11]

© EPFL 2015

Delineation is either done manually
(by a cardiologist) or automatically
(either by a bulky bedside equipment
or offline on a PC)

Delineation can be either based on a
single lead or multiple leads

ECG characteristic
waves timing and
amplitude
information

Real-time single-lead
delineator (discrete
Wavelet transform)

[Boichat et al., BSN’09]

Optimizations for online operation:
Processing of short blocks of ECG samples
Dynamically adapting underlying signal thresholds

Integer operations for fast implementation of

complex functions (V) 10
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.(”l- Embedded delineation of ECG characteristic waves

FEDERALE DE LAUSANNE

Delineation is either done manually
(by a cardiologist) or automatically
(either by a bulky bedside equipment
or offline on a PC)

= Delineation can be either based on a
single lead or multiple leads

Baseline

removal . Real-time single-lead ECG characteristic

Baseline I\/Ier?clng delineator (discrete waves timing and

removal of P \Wavelet transform) -amplitude
multiple information

ECG [Boichat et al., BSN’09]
. leads L : .
Baseline = Optimizations for online operation:
removal Processing of short blocks of ECG samples
[Rincon et al., TITB'11] Dynamically adapting underlying signal thresholds

Integer operations for fast implementation of

complex functions (V)

© EPFL 2015 10
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.(”l- Embedded delineation of ECG characteristic waves
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Delineation is either done manually
(by a cardiologist) or automatically
(either by a bulky bedside equipment
or offline on a PC)

[ —

Root- mean-squared

Delineation can be either based on a
single lead or multiple leads

ECGO Baseline

removal . Real-time single-lead ECG characteristic
ECG, [Baseiine Mer?clng delineator (discrete waves timing and

removal or Wavelet transform) amplitude

: multiple information
ECG [Boichat et al., BSN’09]
ECG - leads oL _ _
M [Baseline = Optimizations for online operation:
removal Processing of short blocks of ECG samples

[Rincon et al., TITB'11] Dynamically adapting underlying signal thresholds

Integer operations for fast implementation of

complex functions (V)
© EPFL 2015 10
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ECG

Baseline
removal

ECG

Baseline
removal

ECG,,

—

Baseline
removal

—>

Merging
of
multiple

ECG
leads

[Rincon et al., TITB’11]

© EPFL 2015

Embedded delineation of ECG characteristic waves

Delineation is either done manually
(by a cardiologist) or automatically
(either by a bulky bedside equipment
or offline on a PC)

Delineation can be either based on a
single lead or multiple leads

ECG characteristic
waves timing and
amplitude
information

Real-time single-lead
delineator (discrete

Wavelet transform)

[Boichat et al., BSN’09]

Optimizations for online operation:
Processing of short blocks of ECG samples
Dynamically adapting underlying signal thresholds

Integer operations for fast implementation of

complex functions (V) 10



.(Pﬂ- Arrhythmia detection in WBSN systems

FEDERALE DE LAUSANNE

= Database of pathologies based on [QRS,,,QRS,,,]<0.10s

delineated points and thresholds 0.12s<[P,,, QRS,,]<0.20s
= Defined at design time with doctors Tpeak>0
(few 100s of bytes of memory) [QRS,,;R,¢.]<0.03s
= Applied at run-time by using a simple QT interval rule
look-up table HBR variability

Atrial activity

/

AsA/—/L Filtering — ECG | J Arrhythmia J
o delineation diagnosis

© EPFL 2015 1"



I Arrhythmia detection in WBSN systems

FEDERALE DE LAUSANNE

= Database of pathologies based on [QRS,,QRS, ,]<0.10s

delineated points and thresholds 0.12s<[P,,, QRS,,]<0.20s
= Defined at design time with doctors Tpeak>0
(few 100s of bytes of memory) [QRS, ;R ck]<0.03s
= Applied at run-time by using a simple QT interval rule
look-up table HBR variability

Atrial activity

o /\_/\_ Filtering —> , £CCG | Arrhythmia|
=) delineation diagnosis

No issues of complexity or memory requirements, but needto ™
develop new adaptive classifiers for each type of person

Biggest issue: Achieve efficient interaction with doctors!

© EPFL 2015 1"



CPF Personal arrhythmia detection WBSN system

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE See video at: http://esl.epfl.ch/cms/lang/en/pid/46016

A Real-Time Wavelet-Based
Electrocardiogram Delineation System

(.

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

© EPFL 2015 12


http://esl.epfl.ch/cms/lang/en/pid/46016

.(Pﬂ. Implementation results on the Shimmer node as WBSN
system

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

= Real-time delineation demands limited requirements after careful

algorithm optimization (computational load and memory footprint)

Algorithm RAM usage Buffers length Execution time
Single-lead WT 6.8 kBytes 512 elements 5%
delineator
Multi-lead WT 5.5 kBytes 256 elements 30.5% total
delineator (23% filtering,
(morphological filter 2.5% multi-lead merging,
of baseline 5% delineation)
removal)

Execution of complex automatic ECG processing algorithms is possible
Small on-chip memory (10 kB) is the current limiting factor

Advanced on-chip processing gives real-time information about heart
health with no impact on node lifetime: more than 139 hours

© EPFL 2015
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) . . . . .
.(”l- The electrocardiogram is a highly compressible signal

FEDERALE DE LAUSANNE

= ECG is highly sparse in the wavelet domain |

300

600
400
2 200 ] —_
O
: N
= X O, = 200
()] % ()
& 100 . 'S
E - ‘P ‘E 0 b
Q )
g 8
E o M S 200
n <
-400 : : : : :
100 . . . . . 0 100 200 300 400 500 600
0 100 200 300 400 500 .
Sample index Coefficient index

= The Discrete Wavelet Transform (DWT) allows near-optimal compression of
ECG signals Orthogonal wavelet basis

Original
ECG x =Y Coefficient vector
vector ' "
lo|, =K <<N
© EPFL 2015
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) . . . . .
.(”l- The electrocardiogram is a highly compressible signal

= ECG is highly sparse in the wavelet domain

Thresholding-based DWT compression
300 - T T T T 600

Setting to 0 the a’s below
a given threshold

N
o
o

400
|

200

Sample magnitude
)
o
*
WT coefficient (a)
o

-200

o

0 100 200 300 200 500
Sample index

-400

0 100 200 300 400 _ 500 600
Coefficient index

-100

= The Discrete Wavelet Transform (DWT) allows near-optimal compression of
ECG signals

Original
ECG x =Y Coefficient vector

vector

Orthogonal wavelet basis

_ But can we create a “universally optimal”
HaHo =K<<N low-complexity compression scheme for
ECG signals that works as well?

© EPFL 2015 14




BN(E\8ff pressed sensing (CS) is a new low-complexity sensing and
FEERALE D LAUSANNE compression paradigm for sparse signals

Using CS it is sufficient to collect M (<<N) linear random

measurements (samples) Measurement/Sensing matrix
(Gaussian random matrix)

nyl = ®M><N .x

Nx1

Measurement vector Original ECG vector

= Then, a can be recovered by solving the convex optimization
problem:

‘dHl Subject to: H(I)‘P(i — sz =0

min

aen®y

© EPFL 2015 15



BN(E\8ff pressed sensing (CS) is a new low-complexity sensing and
FEDERALE DF LAUSANNE compression paradigm for sparse signals

Using CS it is sufficient to collect M (<<N) linear random

measurements (samples) Measurement/Sensing matrix
(Gaussian random matrix)

nyl = ®M><N .x

Nx1

Measurement vector Original ECG vector

CS is attractive for real-time ECG compression on
= Then resource-constrained WBSN, but what about biosignal
probl degradation due to CS reconstruction (in real-time)?

‘dHl Subject to: H(I)\P(i — sz <0

min

aen®y

© EPFL 2015 15



I Compressed Sensing

FEDERALE DE LAUSANNE

£
Yy
f\ﬁ
L
J
Compression
Random projection
[n x 1] [m x n [m x 1]
>Nyquist Rate <<Nyquist Rate
RN >
y min |x |
I
A~
L~
J
Recovery
L1 norm minimization

b
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I Compressed Sensing

FEDERALE DE LAUSANNE

8

Simple Encoder

Compression

Yy
o2
J
Random projection

[n x 1] [m x n [m x 1]

>Nyquist Rate <<Nyquist Rate

Yy
= ‘E
9

»

Recovery
L1 norm minimization

Complex decoder

b



(i Database, performance metrics and

ECOLE POLYTEC HP\lOJk

oo comparison

= MIT-BIH Arrhythmia database:

= Contains 48 half-hour excerpts of two-channel
ambulatory ECG recordings

= Reference database for ECG compression studies

= Percentage Root Mean Square Difference (PRD) is
defined as:

PRD = 2=X2 x 100 | | SNR = —20log,, (0.01PRD)

|x|2

Reconstructed Signal Quality
"Very good” quality

"Very good” or "good” quality

Not possible to determine the quality group
b



m/wm CS is competitive in the low PRD range for
R high-fidelity compression

50 .
@ 45 CS |
S
e 40 <> DW """""""""""
®astl
2
O 30 - - - - s e
O
()
g D5 b - e
()
= 20
Q
o 15
o Good
§_ 10
-
o 5 Very Good
A A Z\
\ A4 \4 \4

0 20 40 60 80 100
Compression Ratio (CR)

;)



m/wm CS is competitive in the low PRD range for
R high-fidelity compression

50

45 | CS (before) |- - - - e
CS (after) : :

40T ——— DWT (pefore) |~~~ ST

35 H — < — DWT (after) I T T

Output PRD (averaged over all records)

0 20 40 60 80 100
Compression Ratio (CR)

;)



B CS-based ECG WBSN (only 30% of ECG data kept)

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE See video at: http://esl.epfl.ch/page-42817.html

A Real-Time Compressed Sensing
(CS)-Based Personal
Electrocardiogram Monitoring

System

I P

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

" -
> >
(V- Q

© EPFL 2015 19
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http://esl.epfl.ch/page-42817.html

BI(A@ CS provides over a 23-fold reduction in execution time,
e but only 10% node lifetime extension

Code execution time

0
600 30%
450 -
300
150
1.3%
0 I
DWT CS
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BI(A@ CS provides over a 23-fold reduction in execution time,
e but only 10% node lifetime extension

Code execution time

o
600 30%
450 | S -
23 X
300 SR S—
150 |
1.3%
0 J [ ]
DWT CS

© EPFL 2015 20



BI(A@ CS provides over a 23-fold reduction in execution time,
e but only 10% node lifetime extension

Code execution time Node lifetime
147 h
0 150
600 30%
450 - 125
23 X
300 — S 75 1
150 - 37.5 -
1.3%
DWT CS DWT CS No compression
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BI(A@ CS provides over a 23-fold reduction in execution time,
e but only 10% node lifetime extension

Code execution time Node lifetime
147 h
0 150
600 30%
450 - 125
23 X
300 — S 75 1
150 - 37.5 -
1.3%
DWT CS DWT CS No compression

© EPFL 2015 20



BB CS provides over a 23-fold reduction in execution time,
Y but only 10% node lifetime extension

Code execution time Node lifetime
147 h

o 150 -
600 30%
150 - 1125

23 x
300 S o 75 -
150 37.5 |
1.3%
0

“Limited gains because the used generic mlcrocontroller
IS not optimized for ultra-low power DSP and CS- based'

operations in biological signals

© EPFL 2015 20



) Simplicity is the key: A new generation of ultra-low-
(]
Y power processing cores for WBSNs

FIRAT/TamaRISC: Inspired on PIC24
= 16-bit RISC, simple 3-stage pipeline
= Drastically reduced to 25 types of instructions
(added CS execution support)
= 1 cycle/inst., Immediate branch, full data bypass
= Minimal ALU: ADD, SUB, AND, OR, XOR, Shift, Mult.

Minimal area/power for biosignals processing
= Less than 5% of an embedded platform (< 10 kGE)
= Low-power computing: ~10 MHz (180MHz@1V)

Dicle (umcL 180nm)

© EPFL 2015

4 N
Program
Read Addr
Instruction
Port
Data Read
| Adaress
Decode | Register |
File
aad Read Data
4:"” Port
ALU
ADD, SUB || AND, OR. XOR
. Write Data
| SR
([Execute TamaRISC)

[Dogan et al., DATE 2012]
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A Simplicity is the key: A new generation of ultra-low-

Y power processing cores for WBSNs
\
= FIRAT/TamaRISC: Inspired on PIC24 ( ‘a.,?;’ii;‘é?
= 16-bit RISC, simple 3-stage pipeline
= Drastically reduced to 25 types of instructions -~
(added CS execution support) Data Read
= 1 cycle/inst., Immediate branch, full data bypass e
= Minimal ALU: ADD, SUB, AND, OR, XOR, Shift, Mult.
Oecode .| Register |
= Minimal area/power for biosignals processing " fb Road Outa
= Less than 5% of an embedded platform (< 10 kGE) ‘# T
= Low-power computing: ~10 MHz (180MHz@1V) [ ALU ]
— (WHEaEO "Fon
\Execute TamaRISC)

[Dogan et al., DATE 2012]

g 4 ==
Dicle (umcL 180nm) ‘

Firat ASIC vs. 1chf coin

© EPFL 2015 21




A Simplicity is the key: A new generation of ultra-low-

Y power processing cores for WBSNs
\
= FIRAT/TamaRISC: Inspired on PIC24 ( ‘Reproim
H ao Acdr
- 16-bit RISC, simple 3-stage pipeline Fetch Instruction Fetch ]— -
= Drastically reduced to 25 types of instructions -
(added CS execution support) Deta Read

Address
-

= 1 cycle/inst., Immediate branch, full data bypass
= Minimal ALU: ADD, SUB, AND, OR, XOR, Shift, Mult.
Oecode ..JL Register |
. . : File
= Minimal area/power for biosignals processing e Road Outa
= Less than 5% of an embedded platform (< 10 kGE) ?} T
= Low-power computing: ~10 MHz (180MHz@1V) [ ALU ]
‘_:“W — Wite Data
e L (WiteBag) |
\Execute TamaRISC)

F"'at (umcL 90“"‘) [Dogan et al., DATE 2012]

‘ - .. And on a finger tip!

Firat ASIC vs. 1chf coin

© EPFL 2015 21
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(i Simplicity is the key: TamaRISC processing core
TR T and memories

= Specialized 16-bit RISC for biosignals

= But memories are key: 50% energy

Program
Read Address
p—-=

Instruction
Port

Data Read
Address
—

Read Data
Port

. Wrie Data

= -(WriteBack)————+—
[Execute TamaRISC)

[Dogan et al., DATE 2012]

© EPFL 2015 22




B/ Simplicity is the key: TamaRISC processing core
(T and memories

= Specialized 16-bit RISC for biosignals

= But memories are key: 50% energy

Program
Read Address
—

Instruction
Port

Data Read
Address
—

Read Data
Port

= Low-voltage multi-banked

| memories
I = 32-kB instruction memory (IM)
- -71’}302‘“" = 36-kByte data memory (DM)

(Execute TamaRISC)
[Dogan et al., DATE 2012]

© EPFL 2015 22
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!ﬁt‘! TamaRISC: Experimental results

FEDERALE DE LAUSANNE

Number of Clock Cycles(*)

FIRAT TamaRISC | MSP430
Filtering-DWT 1.85M K 1.81M 47M
Compression 114K 90K 800K

(*) 1-package compression (512 samples)

© EPFL 2015 23
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TamaRISC: Experimental results

Number of Clock Cycles(*)
FIRAT Tam-aRISC MSP430
Filtering-DWT 1.85M K 1.81M 4 7M
Compression 114K 90K 800K

(*) 1-package compression (512 samples)

10

01

0.01

Dynamic Power Consumption [mW]

wwFirat ee=TamaRI|SC

20

40

TamaRISC only 38% of
MSP430 cycles due to
architecture specialization
and low voltage operation

TamaRISC vs Firat; Faster and 30% extra

power savings due to full data bypass,
CS support and low-power encoding

Energy per Ops | Technology

@10V
TamaRISC 12.1 pJ 90 nm
16-bit [Kwong,2011] > 47 pJ 130 nm

g0 | 32-bit [Ickes,2011] 19.7 pJ-27 pJ 65 nm

Number of Operations [MOps/s]

© EPFL 2015
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ML TamaRISC: Experimental results

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Number of Clock Cycles(*)
‘ FIRAT TamaRISC | MSP430
. Filtering-DWT 1.85M K 1.81M 47M
Compression 114K 90K 800K

(*) 1-package compression (512 samples)

TamaRISC only 38% of
MSP430 cycles due to
architecture specialization
and low voltage operation

10 TamaRISC vs Firat: Faster and 30% extra

§ power savings due to full data bypass,

§ — CS support and low-power encoding

: Can the users finally see the benefit of CS
° and holistic optimization at system-level?
§ 0.01 ' TamaRISC 12.1 pJ 90 nm

§ =tmFifat =s=TamaRISC ' 16-bit [Kwong,2011] > 47 pJ 130 nm

& Ft = P s0 | 32-bit[Ickes 2011] | 19.7pJ-27pJ | 65nm

Number of Operations [MOps/s]

© EPFL 2015




(L CS and biosignals algorithms analysis show true

Y advantages on ultra-low-power (ULP) processors
©}
e
Lifetime| ., = OWT
(in hours) > e
® No comp.
/ P

MSP430 IcyFlex2 (65nm) Firat (90nm)

© EPFL 2015 24
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Lifetime
(in hours)

= Feasible to develop long-lasting
smart WBSN nodes that interact
with smartphones
= Adapts at run-time to patient’s heart
= Automatic detection of arrhythmias

CS and biosignals algorithms analysis show true
advantages on ultra-low-power (ULP) processors

mDWT
mCS

= No comp.

MSP430 IcyFlex2 (65nm) Firat (90nm)

@,’SmartCardia

= Real-time notification to doctors - -

© EPFL 2015
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(L CS and biosignals algorithms analysis show true
Y advantages on ultra-low-power (ULP) processors

© EPFL 2015 See video at: http://www.smartcardia.com -



B  Smart ULP WBSN designs can reach resonance in the
EoLE rOLTECHNIQUE media, but also impact in medical community!

Lo réoumb. “,.,c.u.mmmm. , ; , l I <1 rlwl l\/l I)S

Date: 19.10.20M1

Blick

EinSMS
vom Herz

Lavsanne - Diagnose: Herz-
infarkt. Der haufigsten Todes-
ursache der Welt wird der Kampf
angesagt, und zwar mit Schwei-
zer Technik, Forscher der ETH

Lausanne haben ein Gerat ent-
. - wickelt, das den Herzrhythmus
CNN Labs ILADS konstant Gberwachen kann, Falls
i eine Rhythmusstorung auftritt,
Smartphone detects danger in a m{;”m,: Patient
heartbeat J und Arzt per SMS oder E-Mail
S Rt R eine Warnung. «Das System
liefert sehr prazise Daten und

verfugt Ober einen leistungsfahi-
gen Akku mit einer Laufzeit von
drei bis vier Wocheny, sagt For-
scher David Atienza.

Non- mtruswe light and’ !
can reduce visits by
50-60% for patients

(4-week test)

© EPFL 2015 26



(L | Next-Generation: “Really Smart”
b T N (or just Smarter) WBSN for Healthcare

_-Bio-signals > Sensing> Processing> Transmit >

- ECG PN
- Blood pres. / \

-EEG - ——— e e e e —— e ————— | iDiagnose,_
- Respiration : | ﬁbnlormallty,
nalysis
. Movements I| Instruction P Data : y
. — Processor — I
I| memory memory |
: !
____________________ |
Peripherals
WBSN

CAN WE DO BETTER?

© EPFL 2015 o7



(L | Next-Generation: “Really Smart”
b T N (or just Smarter) WBSN for Healthcare

_-Bio-signals > Sensing> Processing> Transmit >

- BIogd pres. ] Disgnose
-EE T T T T - - = h ,
irati ' 'Abnormalit

- Respiration : corellcore | Agal(;sisa 2
\:\Movements I| Instruction | | [~ A~ 1| |  Data :

I| memory memory |

' Core||Core I

I |

Peripherals
WBSN

CAN WE DO BETTER?

- Ultra-low Power (ULP) architectures
- Hybrid CS-based front end design

- Selective DSP (Classification)
- Multi-lead Compression

Let’s exploit BIG DATA!

© EPFL 2015 27




M CP Outline

ECOLE POLYTECHNIQUE
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Software

= On-node compression
= Selective advanced ECG analysis
= Multi-lead compression
» Robust Compressed Sensing

Hardware

» CS-based Analog to Information
» ECG ultra-low-power front-end design

b
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Lead 1
Lead 2

Lead 3

Selective advanced ECG analysis

Y S

WBSN Example:
- TamaRISC uC

- 8MHz

- 16-bit

- 128 KB

- Flash
- CC240 radio

- Zigbee

- Bluetooth
- 480 mAh Battery
- 1200h running

N Y N
=
[

Advanced DSP

Qns Cormplex
—_—

© EPFL 2015
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e Selective advanced ECG analysis
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Lead 1 -———«Lj\~—

P/

Lead 3 %

WBSN Example:
- TamaRISC uC

- 8 MHz

- 16-bit

- 128 KB

- Flash
- CC240 radio

- Zigbee

- Bluetooth
- 480 mAh Battery
- 1200h running

© EPFL 2015

_

Advanced DSP Delineation
J
“Activate
i | Advanced DSP”

T

[ Normal Situation?  |[YE° >Rep°rt Normal®
\_ e,
Possible Selective Activation?

29



I CPF Classification of Heartbeats
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-
Normal condition [

Advanced DSP

= Normal heartbeat
morphology

Classif. heartbeats
= Problem dimensionality

“Activate

Advanced DSP”

Heartbeat C
detection LASSIFIER

\

YES

J

= Very complex existing
algorithms

© EPFL 2015

Delineation
)

ormal”

>";Report



I CPF Classification of Heartbeats
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Normal condition
= Normal heartbeat
morphology

Classif. heartbeats

= Problem dimensionality

= Very complex existing
algorithms

f
[ Advanced DSP

“Activate

Advanced DSP”

Heartbeat
detection

CLASSIFIER

\

Delineation
)

“Report
ormal”

J

Light-weight embedded heartbeat classifier

1. Random Projection (RP) dimensionality reduction
2. Embedded Neuro-Fuzzy classifier (NFC)

© EPFL 2015
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L Proposed framework for next-generation WBSN designs
Itrlaining sets of beats ﬂ

FEDERALE DE LAUSANNE
Training PC
(floating point precision)
‘m —>Precision change

A\ 4

Adaptations / - Computational complexity reduction
Optimizations —->Memory footprint contention
. “Optimized™ ™~ . | _ _ & & D e o o o e e e e e e e e =
~ - RP-NFC _ -~ (7 S
Advanced DSP (multi-core TamaRISC) elineation
Real-Time Execut. {/‘, [ e ——— :>

(integer arithmetic) @) No; Advanced BSP

WBSN | [ | e ‘NFiifnoarﬁ,

k ol

© EPFL 2015 31



MW itia) case study: Smarter ECG Monitor

FEDERALE DE LAUSANNE

N
e Advanced DSP Delineation
1(9 points per heartbedt)
“‘Activate = | = === ==

Advanced DSP”
N

Typical ECG Monitor |\ J J¥i01 point per heartbeat)

Duty Cycle
mAdvanced DSP
mEXxtension

Idle Time

.

83%

Duty cycle reduction of 65% for MIT-BIH DB
Transmission or storage reduction of 68%

In a real test with multi-core WBSN node
> Energy savings of 23%

Up to 61.5 days of operation
(~1476 hours), finally we got
Smarter ECG Monitor our ULP WBSN!

© EPFL 2015
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M CP Outline

ECOLE POLYTECHNIQUE
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Software

= On-node compression
» Single-lead compression
= Multi-lead compression
» Robust Compressed Sensing

Hardware

» CS-based Analog to Information
» ECG ultra-low-power front-end design

b




M Multi-lead Compression

FEDERALE DE LAUSANNE

* Doctors need multi-lead ECG signals

 ECG leads are different projections of a single multi-
diminutional source.

Leads

ot
8t
7F
6
5t
4+t
3
oL
1

Time (sec)

34
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QoI Joint Sparsity Structure
Multi-lead ECG sparse wavelet Coefflc:lents
: ! ! 15 o © o ° P
]i :.- e o ° P
13 aume @ ¢ o
12k amee® o o ° P
11¢ : 5 10_.- e o ° ¢
o o | | ‘ £ ==t :
e e L —
R | | R :
4r ‘ Emmn wwee o o oo
3 : amsmoe o o ° <
2r ™\ Emume a» o ° F
1 : 1#.-. o ® . . K
0 0:5 1 1.5 2 100 200 300 400 500
Time (sec) Sample Number

e Strong similarity exist between support of sparse
representation among leads.

* Required measurements in normal CS M = 0(5)

To embed the location
of non-zeros 35




L . .
T Joint Sparsity Structure

Multi-lead ECG sparse wavelet coefficients
r : ! ! . Hﬁ e o ® r )
N . amme® o o ° e
L aume @ ¢ o
L amee® o o ° q
[ ‘ R == :
% 9t . ‘ ~'* ‘ l ” ‘ ‘ g amenmw o oo o <
§ g ‘ “ "’ % h-o:o.. ooo:.o oo: . :
6 S 5_- ° e o P
5¢ : Qo h.o.o ® o000 0 o0 o
4r ‘ Emmn wwee o o oo
3 : amsmoe o o ° <
2r ™\, Emume a» o ° <
1 ) 1#.-. o ® . . K
0 0i5 1 1.5 ) 100 200 300 400 500
Time (sec) Sample Number
CS: min||A subject to: ‘
aeR 1
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L . .
T Joint Sparsity Structure

Multi-lead ECG sparse wavelet coefficients

Leads

s S

leads Number

“NWAOOITO N

5 100 200 300 400 500
Time (sec) Sample Number

o
o
—
—
o

0eRN 1

CS: min||A subject to: H(p\{lg -y|| <o

Joint comp: min A subject to: H(I)\}lg_y <o

aeRN 1,2

35



ML Joint Compression: Results
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Joint Reconstruction -group sparsity

50 ; ; ;
Normal Reconstruction 3 ’
© + == == Joint Reconstruction 3
S 40t O o - S B
o : : : :
T I I I I
5 30 ........ e [ e N
8 I I I I )
() I _’
(a4
o Y0 T . ;I .......
s L/ . Good
z © =T
L -
V% -1 == _ ------ 65.&9- 1 -72;.-7- -------
0 20 40 60 80 100

Compression Ratio (CR)

e 7% improvement of Compression ratio

36
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M Power Consumption breakdown
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 Power consumption comparison

B Radio
Bl Code execution
. Sampling + OS

Normal CS

Joint Compression

0 12.5 25 37.5 50
Energy [uJ]

* 26% node lifetime extension on top of normal CS
(Shimmer Platform)

37
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Software

= On-node compression
» Single-lead compression
= Multi-lead compression
= Robust Compressed Sensing

Hardware

» CS-based Analog to Information
» ECG ultra-low-power front-end design
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comene:  HYybrid Memory on a Multi-core Processor

* Use of reliable Standard Cell
(SC) Memories (SCMEM)
allows scaling to lower supple
voltage, but in cost of large
area penalties.

o Use of 6 Transistor SRAM (6T)
cell memories are not reliable
in supply voltage scaling.

» Ultra-low power multi-core
architecture for multi-channel
bio-signal processing.

* Hybrid memory architecture
with 6T SRAM and SCMEM
working on a aggressive
voltage scaling.

[ scMEM [ 6T SRAM |

MB#0 MB#15

6T/SCMEM

LIC

Architecture designed by
university of Bologna

39
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Sensing Matrix is stored in 6TMEMs

40
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AP Robust Compressed Sensing
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Probability of error in each trial for a 16-bit read

Sensing Matrix iS Stored in 6TMEI\/IS gO? L T I R IR
06 .........................................

2
. E 05 .........................................
Joint comp: CRYI S - ]
%Os .........................................
Y = 06X = PYVA S 2
. A . ~ §0_1 ................ - ]
gelI}RINIALZ subject to: H(I)LPA_YZgG & ol T ]

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Voltage Scale [Volt]
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AP Robust Compressed Sensing

F[DERALE DE L'\LS:\I\N[

Probability of error in each trial for a 16-bit read

Sensing Matrix is stored in 6TMEMSs g
0B [

2
. B OB
Joint comp: € oaf = ]
Soab ]
Y = OX = OYA sloo=
BTN c_‘gs O f oo _—
[nlII}A subject to: ‘ £ ol T .

0eR 1,2

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Voltage Scale [Volt]

Joint comp with Error:

1 =

=(@®+E)X=(®+E)¥YA S
sosp S Sy Y
Robust Compressed Sensing g o6 ] SRR
Y B
TN f; : : - )—s— =15
min| (A ‘ <o §ozr [/ [ 4 / —%—1L=30-
AE 12 ) & | | ¢ —e—L=45
—H8— L =60

0 C LV ) !
04 045 05 055 06 065 0.7 0.75
Voltage scale [V] 40
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o apman Robust Compressed Sensing
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25< ..................................
¢ 0O OO
[72]
'e 20 .......................................................................
o)
O
o
<1>J 15¢ - 02
o
n'd
&
s 10 .........................................
(0]
(@)]
© : : :
j?’ 5l... .. o ..+RObUStCS......‘ ......
| -+ == Error Free Multi-Lead CS
O Error Free Normal CS : : : :
O 1 1 1 1 1 1 N ) 1 )
04 045 05 055 06 065 0.7 0.75 0 0.5 10 0.5 1

Voltage [V] Time [sec] Time [sec]

Design reach to 60% reduction in Power consumption with a
13% area overhead
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Software

= On-node compression
» Single-lead compression
= Multi-lead compression
» Robust Compressed Sensing

Hardware

= CS-based Analog to Information
» ECG ultra-low-power front-end design
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P CS-based A2l
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= Why analog implementation?

—| Sampling  Compression — Radio

b



P CS-based A2l

FEDERALE DE LAUSANNE

= Why analog implementation?

—1 Compressed Sensing

Radio

b



.(Pﬂ! CS-based A2l

FEDERALE DE LAUSANNE

= Why analog implementation?

—1{ Compressed Sensing > Radio

= Ultra-wide band Signal Processing

—Huge burden on sampling devices is not
manageable

;)



I CS-based A2|

ECOLE POLYTECHNIQUE
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—
n

ENOB (bits)

= Ultr

—_
o

© ADMS Design AB, www.admsdesign.com Grestihchoy N
o PRPRPTTPTT PPy FRPRPETTTT SR - AAAA PP | . — e N Al
10° 10" 107 107 10" 10° 10 10 10 10 10]
Sampling Rate (MS/s)

b



-(Pﬂ- CS-based A2l

l[[)ERALE DE L LSU\\JL

= Why analog implementation?

—1{ Compressed Sensing > Radio

= Ultra-wide band Signal Processing

—Huge burden on sampling devices is not
manageable

= Power-aware sensing

—By merging sampling and compression and thus
removing large part of readout and digital
processing part.

;)
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.Qﬂ! Random Modulator

FEDERALE DE LAUSANNE

= Signal Model: ;) _ zn:()éi¢i(t)
1=1

= Random Modulator

-
o) o | R S

@Nyquist Freq.| P(t)

@Below Nyquist Freq.

P.(t)=p; te [— ﬂ) i=01,... . n—1

b



MO Analog CS: RMPI

FEDERALE DE LAUSANNE

« RMPI: Random Modulator Pre- NI
Integrator () L=
h(t) —/—»—yQM
* parallel RM channels ) || ot
e Further reducing ADC rate tot=4
h(t)—/—»ycm
e Less measurement st
L C ‘

= Limitations:

= EXxact representation of the digital CS means that
number of channels should be equal to the number
of measurements.

= Random modulation (mixers) should work at
Nyquist Frequency

= higher number of channels is not practical! db



P Analog CS: RMPI

FEDERALE DE LAUSANNE

* RMPI: Random Modulator Pre- ( @ ol
Integrator (] b=
1 yali]
h(t) —/—»—
e parallel RM channels (t%)
Ol | R
. —— °
* Further reducing ADC rate 'r@)? | g e
“sRMPI h(t) el
 Less measurement 4’?‘
. pc() )

 New Architecture proposed to reduce number of
channels in RMPI architecture and reduce random
modulation called SRMPI.

e The design is for highly sparse signals

;)



e Hardware Optimization: Analog CS

FEDERALE DE LAUSANNE

= 8-channel RMPI/SRMPI reconfigui
Implemented

= Main board + 8 RM daughter b

= Connected to PC with DAC for rec S )
communication

= SRMPI pre-modulation are implen
(bypassed for RMPI)

= modulation (CMOS Switch) 8-channel Implementation
of Analog CS

R T -

= Integrator (Analog filter)
= ADC

;)
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-(”l! Experimental Results
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= Signal model: 3 tone (sinusoid)

120

T T T 140 pr—
110l | —H— SRMPI, M = 64 SR - SNR,, = 60 dB
—+H— RMPI, M =64 120 b oo 2 < e N
100 | —<—— SRMPI, M =32 T ; ~ SNR, _=400B
90 | —9—RMPI,M=3 1okl - ST L i
. . A 3 = . .
oy 80 L . i —~ - - _
%; g sop SNR,;, =20dB - - - - 2
S o0l .. S S e ] % g
g " o ol® ]
%) 60F - i % N
50 ................................... 4 40 _ ......................................... u
40 : SNR, =-5dB
20 -
30F- AR ] 1 —O— RMPI
g ——k—— SRMPI
20 1 1 1 1 1 1 3;," 7]
-10 0 10 20 30 40 50 60 1024

SNR. (dB)
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 Power consumption of main blocks

« ADC
e Mixer (modulator)

¥
| Energy Consumption

2
E 5 ......... | 0.29358 nJ 444444444444444 |
I I

15

P[mW]

Time [us]

b
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.Qﬂ! Power break-down

FEDERALE DE LAUSANNE

 Power consumption of main blocks
« ADC

e Mixer (modulator)

Energy [uJ]
w

-
o1

0

Nyquist Sampling RMPI SRMPI

= 63% and 75% Reduction in power consumption by
RMPI and SRMPI respectively.

= SRMPI outperforms RMPI by at least 25%.

b
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Software

= On-node compression
» Single-lead compression
= Multi-lead compression
» Robust Compressed Sensing

Hardware

» CS-based Analog to Information
= ECG ultra-low-power front-end design
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 New hybrid digital+analog design is proposed

 Parallel low resolution channel

e High resolution RMPI channel

Hybrid CS-based Front-end

1 - Channel ECG

»
>

Compressed Sensing

™ Low Resolution ADC

»
>

CS data

Y

Low Res.

Y

1250

1200 o

Raw ADC Samples
— — — —
o o - -
o (82 o (6)]
o o o o

Y

> o950} Mﬁ%w

900

0 0.5 1
sec

Original ECG
Low Resolution ECG

50
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TS Hybrid CS-based Front-end

 New hybrid digital+analog design is proposed

e Parallel low resolution channel 1200
1150f ]
e High resolution RMPI| channel 8 1100
£
1 - Channel ECG g § 1050
» Compressed Sensing » T > ;
n § 1000
O Transmit
> 950 |
> > é . 900 : : :
"| Low Resolution ADC 1 = v 0 0.2 Se(3:.4 0.6
5 I Bound Area

Original ECG

50
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.Mvgul’ Hybrid CS-based Front-end

 New hybrid digital+analog design is proposed

 Parallel low resolution channel

RN

e High resolution RMPI channel

1 - Channel ECG

Y

Y
CS data
Y

Compressed Sensing

Transmit

[
>

Y
Y

™ Low Resolution ADC

Low Res.

|P¥a —yll2 <o, l

min |||, subject to
ek X< P& <x+d

Relaxed RIP, fewer measurements

50
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A B IR Performance Quality Comparison

25

Good

N
o

-
6)]

-
o

Averaged SNR over records

5t : NG ]
—<— Hybrid CS
CS : : : : .
O | | | | | | |
50 56 62 69 75 81 88 94 97

Compression Ratio (%)

35 % reduction in compression ratio
e Very good performance at higher CR (SNR = 17dB @97 %)
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T Performance Quality Comparison

18.7 dB @86% 19.7 dB @80%

1 : : 1 - -
ol | ....... 08 ________ .......
oo | | ool | |
0_4_. ........ | 04 ...............
> o020 | | > 02l | ]
ol Lo A R

0 0.5 1 0 05 1

Ori;iical ECG OriZi(T'\C;I ECG

— — — Reconstructed ECG — — — Reconstructed ECG

35 % reduction in compression ratio

e Very good performance at higher CR (SNR = 17dB @97 %)
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T Power consumption break-down

e Power break down

10
10 ¢ - - - - e P e L
s 4 ~+ P ladc]
Z 10 P [Int]
S & P [amp] _ . . .
3 10 P[Total] |.. .- .. . .| S A :
S 10 -
S)
o 2
2 10
o
[a
w 0
O 10
(@)]
S
;3 10
107" —
4 -3 2 - 0 1 2
10 10 10 10 10 10 10

Sampling Frequency (MHz)

2.5 X Power reduction compared to RMPI at Good quality
11 X reduction at SNR = 17dB (number of channels = 16)
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Smart ULP WBSN nodes needed to enable new healthcare
= Feasible to do real-time automated biosignals analysis
= Communication not always the worst part: sensing and processing

Knowledge about target bio-signals not to over-design WBSNs
- Compressed sensing very powerful approach (if used with care)
- Removes need for complex instructions sets and limits memory use

New ULP WBSN multi-parametric architectures coming up
= Adaptive to each patient (big data link!)
= Joint compressive sensing can help to significantly save power

Novel field: wearable multimodal biosignal systems
= Develop uses of these new WBSNs to monitor other emotions, etc.
= Design methods to ease low-power software mapping needed!

© EPFL 2015 53
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